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Motivation and Recent Findings 

• Sparse coding has a variety of applications, such as image denoising 
and data compression.
• Recent work has shown the how sparse coding and biologically 

inspired architectures can mitigate adversarial attacks on images.



Sparse Coding

• Sparse coding: the process of finding a sparse subset of overcomplete 
dictionary elements along with corresponding coefficients to effectively 
reconstruct a signal
• Essentially, the goal is to find a good reconstruction that is also sparse.

• Biological sensory systems, like V1, seem to employ sparse representations 
with population codes, allowing for complex stimuli to be encoded in the 
activity of a few neurons. 



Sparse Coding with LCA

• “Locally Competitive Algorithms” solve the sparse coding problem with a 
dynamical system of nonlinear ordinary differential equations, through 
local competition and thresholding.

• Thresholding functions limit the lateral inhibition by only allowing highly 
active units to suppress others and forcing most coefficients to be 
identically zero.
• Here, we use a soft-thresholding, corresponding to an L1 sparsity penalty.

• LCAs display properties necessary for a neurally plausible sparse coding 
algorithm, such as stability, sparsity, and the ability to handle time varying
stimuli.



Fast LCA Approximation

• The problem: sparse coding is slow
• Proposed solution: estimate sparse codes more

quickly with feedforward neural networks, trained on 
pre-computed sparse code examples
• Implementation

• Learned 5 dictionaries of increasing overcompleteness
• 128, 160, 192, 256, 1024 elements

• Inferred sparse codes of 8 by 8 grayscale CIFAR image 
patches via positive LCA with each dictionary

• Trained 5, 2 hidden-layer feedforward neural networks on 
these LCA computed codes
• Nodes in each hidden layer = number of output dictionary 

elements input: flattened 8 by 8 CIFAR patch, n = 64

n = number of dictionary elements

n = number of dictionary elements

output: sparse code of n coefficients



• The ability of a 
feedforward, fully 
connected neural 
network to estimate 
the solution to a sparse 
coding approximation 
(LCA), diminishes as the 
dictionary used to 
reconstruct signals 
becomes more 
overcomplete.
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Future Work

• Can neural networks reach a more accurate 
LCA approximation by learning fewer inference
steps at a time, progressively reaching the 
solution?
• If so, how much does the problem have to be 

broken down to be solved?

• Approximating sparse coding with neural 
networks has the potential to greatly speed up 
an approximation of sparse code inference.



Thank you!


